Перевод: со всех языков на все языки

со всех языков на все языки

функцию в последовательность

  • 1 последовательность Голда

    1. Gold sequence

     

    последовательность Голда
    Последовательность, образуемая путем посимвольного сложения по модулю 2 двух псевдослучайных последовательностей. Последовательности Голда с периодом 2n-1 имеют трехзначную функцию автокорреляции (-1, -φ(t), φ(t)-2), где φ(t)=2(N+1)/2 - для четных N, φ(t)=2(N+2)/2 - для нечетных N. Последовательности Голда находят применение в системах, основанных на технологии CDMA (GPS, IS-95, WCDMA и др.).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > последовательность Голда

  • 2 консервативная последовательность

    [лат. conservatives — охранительный]
    нуклеотидная последовательность в нуклеиновых кислотах или последовательность аминокислот в полипептидной цепи, совсем не измененная или незначительно измененная у разных организмов в ходе эволюции. Предполагают, что К.п. определяет какую-либо жизненно важную функцию и таким образом избирательно сохраняется в процессе длительной эволюции организмов.

    Толковый биотехнологический словарь. Русско-английский. > консервативная последовательность

  • 3 develop

    dɪˈveləp гл.
    1) а) развивать(ся) (from;
    into) This tall tree developed from a small seed. ≈ Это дерево выросло из маленького семени. Who knows what results will develop from your first success? ≈ Кто знает, какие плоды принесет ваш первый успех? Jane is developing into a fine figure of a young woman. ≈ Джейн превращается в очень хорошенькую женщину. Syn: mature, evolve б) излагать, раскрывать, строить, развивать ( о речи, повествовании, понятии) Syn: unfold в) проявлять(ся), выяснять(ся), обнаруживать(ся), делаться очевидным A census of Kansas City's saloons develops the startling fact that there are about 1,
    000. ≈ Перепись салунов в Канзас-Сити показала удивительный факт - их около тысячи. г) шахм. развивать фигуру д) мат. разлагать( функцию в последовательность и т.п.)
    2) а) совершенствовать б) разрабатывать, конструировать, создавать в) муз. писать обработку;
    развивать, варьировать
    3) специальные термины а) мед. распространяться, развиваться( о болезни, эпидемии и т.п.) б) фото проявлять пленку I still got that roll... - Well, let's then develop it, while I still fit in my clothes! ≈ У меня же есть эта пленка... - Так давай же проявим ее, пока я не стал великоват для своей одежды! (из компьютерной игры Full Throttle) в) амер.;
    воен. развертывать(ся) ;
    начинаться The attack would be developed from the north. ≈ Атаковать начнем с севера.
    4) геом. быть изометричным плоскости (о поверхности фигуры) развивать, совершенствовать - to * one's business развить дело - to * a melody( музыкальное) развивать тему развиваться, расти;
    расширятьсяделе, предприятии) ;
    превращаться - his character is still *ing его характер еще не сложился окончательно - let things * пусть все идет своим чередом развиваться, проходить, протекать - the fever *s normally лихорадка протекает /течет/ нормально - the situation *ed rapidly события развивались стремительно начинаться - a *ing snowstorm начинающийся буран показывать, обнаруживать - to * a passion for art проникнуться страстной любовью к искусству - he *ed symptoms of fever у него обнаружились симптомы лихорадки - he *ed a strange habit у него появилась странная привычка - at school he *ed a great gift for mathematics в школе у него обнаружились недюжинные математические способности проявляться, оказываться, обнаруживаться - a new feature of the case *ed today сегодня дело приняло другой оборот - it *s that... оказывается, что... излагать;
    раскрывать - to * an argument развивать аргумент - to * a case to an audience излагать дело слушателям разрабатывать - to * mineral resourses разрабатывать полезные ископаемые - it was at a time when atomic energy has not yet been *ed это произошло в эпоху, когда атомной энергетики еще не существовало (горное) развить (добычу) (горное) вскрыть (месторождение) создавать - to * a strong organization создать сильную организацию создавать, вырабатывать, получать - to * heat получать тепловую энергию создавать, разрабатывать - to * a system разработать систему (сельскохозяйственное) выводить (сорт или породу) (специальное) развивать, достигать;
    иметь (мощность, скорость и т. п.) - the motor *s 100 horsepower мощность двигателя составляет 100 лошадиных сил (спортивное) разучивать - to * new routines разучить новые элементы( о гимнасте) (американизм) (устаревшее) выявлять, выяснять, раскрывать - to * smb.'s position выяснить чью-л. позицию - the inquiry has *ed some new facts расследование вскрыло несколько новых фактов (фотографическое) проявлять (фотографическое) проявляться (шахматное) выводить (фигуру) ;
    развивать (фигуры) - to * a rook вывести ладью (шахматное) развиваться (военное) расчленять, развертывать (войска) (военное) развивать (успех) - to * an attack развивать наступление (математика) разлагать, раскрывать (выражение) (математика) развертывать (кривую поверхность) develop выяснять(ся), обнаруживать(ся), становиться очевидным;
    it developed that he had made a mistake выяснилось, что он ошибся;
    to develop the enemy разведать противника ~ делить ~ застраивать ~ излагать, раскрывать (аргументы, мотивы и т. п.) ~ использовать ~ конструировать, разрабатывать ~ конструировать ~ протекать ~ проявлять(ся) ;
    he has developed a tendency to brood у него проявилась привычка размышлять;
    он стал часто задумываться ~ развивать(ся) ~ развивать ~ развиваться ~ амер. воен. развертывать(-ся) ;
    to develop an attack развертываться для наступления ~ разрабатывать;
    to develop a mine разрабатывать копь;
    to develop the plot of a story разрабатывать сюжет рассказа ~ вчт. разрабатывать ~ разрабатывать ~ распространяться, развиваться (о болезни, эпидемии) ~ расчленять ~ расширяться ~ совершенствовать ~ создавать ~ фото проявлять ~ эксплуатировать ~ разрабатывать;
    to develop a mine разрабатывать копь;
    to develop the plot of a story разрабатывать сюжет рассказа ~ амер. воен. развертывать(-ся) ;
    to develop an attack развертываться для наступления develop выяснять(ся), обнаруживать(ся), становиться очевидным;
    it developed that he had made a mistake выяснилось, что он ошибся;
    to develop the enemy разведать противника ~ разрабатывать;
    to develop a mine разрабатывать копь;
    to develop the plot of a story разрабатывать сюжет рассказа ~ проявлять(ся) ;
    he has developed a tendency to brood у него проявилась привычка размышлять;
    он стал часто задумываться develop выяснять(ся), обнаруживать(ся), становиться очевидным;
    it developed that he had made a mistake выяснилось, что он ошибся;
    to develop the enemy разведать противника

    Большой англо-русский и русско-английский словарь > develop

  • 4 develop

    [dɪ'veləp]
    гл.
    1)
    а) развивать, совершенствовать

    to develop smb.'s capabilities — развивать чьи-л. способности

    б) развиваться, расти; совершенствоваться

    This tall tree developed from a small seed. — Это высокое дерево выросло из маленького семени.

    Who knows what results will develop from your first success? — Кто знает, какие плоды принесёт ваш первый успех?

    Jane is developing into a fine figure of a young woman. — Джейн превращается в очень хорошенькую женщину.

    Syn:
    2) способствовать росту; укреплять
    3) излагать; раскрывать
    Syn:
    4)

    From that first encounter, he developed a genuine regard for the man. — С самого начала он проникся к этому человеку искренним уважением.

    Cleaning is less of a hassle if you develop a regular routine. — Уборка доставляет меньше хлопот, если вы делаете её регулярно.

    Syn:

    He developed TB. — Он заболел туберкулёзом

    He developed a rash. — У него обнаружилась сыпь.

    Syn:
    6) амер.
    а) выявлять, раскрывать, обнаруживать

    A census of Kansas City's saloons develops the startling fact that there are about 1,000. — Перепись салунов в Канзас-Сити обнаруживает удивительный факт - их около тысячи.

    Syn:
    б) выясняться, становиться известным, обнаруживаться
    7) разрабатывать, конструировать, создавать
    8) фото проявлять плёнку
    9) муз. делать обработку; развивать, варьировать
    10) спорт. развивать (фигуру; в шахматах)
    11) амер.; воен. развёртывать ( войска); начинать ( наступление)
    12) мат.

    Англо-русский современный словарь > develop

  • 5 Gold sequence

    1. последовательность Голда
    2. последовательность Года

     

    последовательность Года
    Псевдослучайная последовательность, образуемая путем сложения по модулю 2 двух псевдослучайных последовательностей.
    [Л.М.Невдяев. Мобильная связь 3-го поколения. Москва, 2000 г.]

    Тематики

    EN

     

    последовательность Голда
    Последовательность, образуемая путем посимвольного сложения по модулю 2 двух псевдослучайных последовательностей. Последовательности Голда с периодом 2n-1 имеют трехзначную функцию автокорреляции (-1, -φ(t), φ(t)-2), где φ(t)=2(N+1)/2 - для четных N, φ(t)=2(N+2)/2 - для нечетных N. Последовательности Голда находят применение в системах, основанных на технологии CDMA (GPS, IS-95, WCDMA и др.).
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > Gold sequence

  • 6 process

    1. Процессы обработки данных
    2. процесс обработки данных
    3. процесс (в теории управления)
    4. процесс (в спорте)
    5. процесс (в системе менеджмента качества)
    6. процесс (в кибернетике)
    7. процесс
    8. процедура
    9. перерабатывать
    10. обрабатывать

     

    обрабатывать

    [[http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]]

    Тематики

    EN

     

    перерабатывать

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    процедура
    Упорядоченная совокупность взаимосвязанных определенными отношениями действий, направленных на решение задачи.
    [МУ 64-01-001-2002]

    процедура

    Установленный способ осуществления деятельности или процесса.
    Примечания
    1. Процедуры могут быть документированными или недокументированными.
    2. Если процедура документирована, часто используется термин "письменная процедура" или "документированная процедура". Документ, содержащий процедуру, может называться "процедурный документ".
    [ ГОСТ Р ИСО 9000-2008]

    процедура 
    Документ, содержащий шаги, которые предписывают способ выполнения деятельности. Процедуры определяются как части процессов. См. тж. рабочая инструкция.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    procedure
    A document containing steps that specify how to achieve an activity. Procedures are defined as part of processes. See also work instruction.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

     

    процесс
    Совокупность взаимосвязанных ресурсов и деятельности, которая преобразует входящие элементы в выходящие.
    [МУ 64-01-001-2002]

    процесс

    Структурированная совокупность действий, спроектированная для достижения конкретной цели. Процесс преобразует один или несколько определенных входов в определенные выходы. Процесс может включать в себя любые роли, ответственности, инструменты и контроли управления, необходимые для надежного получения выходов. Процесс, при необходимости, может определять политики, стандарты, рекомендации, виды деятельности и рабочие инструкции.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    EN

    process
    A structured set of activities designed to accomplish a specific objective. A process takes one or more defined inputs and turns them into defined outputs. It may include any of the roles, responsibilities, tools and management controls required to reliably deliver the outputs. A process may define policies, standards, guidelines, activities and work instructions if they are needed.
    [Словарь терминов ITIL версия 1.0, 29 июля 2011 г.]

    Тематики

    EN

     

    процесс (в кибернетике)
    Последовательная смена состояний, стадий изменения (развития) системы или иного объекта (См. также Преобразование). Различают процессы: вещественные (например, преобразование сырья в готовый продукт в производстве) и информационные (например, преобразование бухгалтерской информации в связи с указанным производственным П.); управляемые (регулируемые) и неуправляемые; детерминированные и случайные (стохастические) — см. Случайный процесс; дискретные и непрерывные — см. Дискретность, непрерывность. Дискретные П. в экономико-математических моделях описываются разностными уравнениями, непрерывные — дифференциальными уравнениями. Для экономико-математического моделирования большое значение имеют также различия в степени инерционности экономических П., т.е. в скорости изменения их параметров (характеристик) под влиянием тех или иных воздействий. См. Инерционные показатели, Нестационарный экономический процесс, Стационарный экономический процесс.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    процесс
    Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы.
    Примечания
    1. Входами к процессу обычно являются выходы других процессов.
    2. Процессы в организации, как правило, планируются и осуществляются в управляемых условиях с целью добавления ценности.
    3. Процесс, в котором подтверждение соответствия конечной продукции затруднено или экономически нецелесообразно, часто относят к "специальному процессу".
    [ ГОСТ Р ИСО 9000-2008]

    процесс
    Совокупность взаимосвязанных ресурсов и деятельности, которая преобразует входящие элементы в выходящие.
    Примечание
    К ресурсам могут относиться: персонал, средства обслуживания, оборудование, технология и методология.
    [ИСО 8402-94]

    Тематики

    EN

     

    процесс
    Связанный и регламентированный набор работ по получению повторяющихся результатов.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    process
    Coherent and regulated set of works aimed at recurrent results achievement.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    процесс
    Последовательность изменений во времени вещества, энергии, информации в объекте.
    Примечание
    Процесс можно рассматривать как объект.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    • автоматизация, основные понятия

    EN

     

    процесс обработки данных
    процесс

    Система действий, реализующая определенную функцию в системе обработки информации и оформленния так, что управляющая программа данной системы может перераспределять ресурсы этой системы в целях обеспечения мультипрограммирования.
    Примечания
    1. Процесс характеризуется состояниями, которые определяются наличием тех или иных ресурсов в распоряжении процесса и, следовательно, возможностью фактически выполнять действия, относящиеся к процессу.
    2. Перераспределение ресурсов, выполняемое управляющей программой, влияет на продолжительность процесса обработки данных, но не на его конечный результат.
    3. Процесс оформляют с помощью специальных структур управляющих данных, которыми манипулирует управляющий механизм.
    4. В конкретных системах обработки информации встречаются разновидности процессов, которые различаются способом оформления и составом ресурсов, назначаемых процессу и отнимаемых от него, и допускается вводить специальные названия для таких разновидностей, например, задача в операционной системе ОС ЕС ЭВМ.
    [ ГОСТ 19781-90]

    Тематики

    • обеспеч. систем обраб. информ. программное

    Синонимы

    EN

    4.25 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующих входы в выходы.

    [ИСО 9000:2005]

    Источник: ГОСТ Р ИСО/МЭК 12207-2010: Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств оригинал документа

    4.11 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующих входы в выходы [3].

    Источник: ГОСТ Р ИСО/МЭК 15288-2005: Информационная технология. Системная инженерия. Процессы жизненного цикла систем оригинал документа

    2.56 процесс (process): Компонент информационной системы, реализующий конкретный алгоритм обработки данных.

    Источник: ГОСТ Р ИСО/МЭК ТО 10032-2007: Эталонная модель управления данными

    3.17 процесс (process): Набор взаимосвязанных работ, которые преобразуют исходные данные в выходные результаты.

    Примечание - Термин «работы» подразумевает использование ресурсов (См. 1.2 title="Управление качеством и обеспечение качества - Словарь").

    Источник: ГОСТ Р ИСО/МЭК 12207-99: Информационная технология. Процессы жизненного цикла программных средств оригинал документа

    3.3 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечание - Определение заимствовано из стандарта ИСО 9000:2005.

    Источник: ГОСТ Р ИСО/МЭК 17020-2012: Оценка соответствия. Требования к работе различных типов органов инспекции оригинал документа

    3.28 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующих входы в выходы.

    Источник: ГОСТ Р ИСО/МЭК 15504-1-2009: Информационные технологии. Оценка процессов. Часть 1. Концепция и словарь оригинал документа

    3.9 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующая входные потоки в выходные.

    Источник: ГОСТ Р ИСО/ТС 14048-2009: Экологический менеджмент. Оценка жизненного цикла. Формат документирования данных

    3.2 процесс (process): Множество взаимосвязанных действий, преобразующих исходные данные в выходной результат в виде продукции.

    Примечание - Процесс может быть основным и вспомогательным (дополнительным) и декомпозирован на подпроцессы, операции.

    Источник: ГОСТ Р 52655-2006: Информационно-коммуникационные технологии в образовании. Интегрированная автоматизированная система управления учреждением высшего профессионального образования. Общие требования оригинал документа

    2.10 процесс (process): Совокупность взаимосвязанных видов деятельности и ресурсов, преобразующая входы в выходы ([4], подпункт 3.4.1).

    Источник: ГОСТ Р ИСО 14971-2006: Изделия медицинские. Применение менеджмента риска к медицинским изделиям оригинал документа

    3.3 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующей входы в выходы.

    Примечания

    1 Входами процесса обычно являются выходы других процессов.

    2 Процессы в организации, как правило, планируются и осуществляются в управляемых условиях с целью добавления ценности (ИСО 9000, пункт 3.4.1, исключая примечание 3).

    Источник: ГОСТ Р ИСО 10006-2005: Системы менеджмента качества. Руководство по менеджменту качества при проектировании оригинал документа

    3.3 процесс (process): Набор находящихся во взаимосвязи ресурсов и действий, которые преобразовывают входы в выходы.

    Источник: ГОСТ Р 51901.4-2005: Менеджмент риска. Руководство по применению при проектировании оригинал документа

    3.10 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечание - Термин приведен в 3.4.1 ИСО 9000. Примечания удалены.

    Источник: ГОСТ Р ИСО 10002-2007: Менеджмент организации. Удовлетворенность потребителя. Руководство по управлению претензиями в организациях оригинал документа

    3.3 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечание - Приведено в 3.4.1 ИСО 9000. Примечания не приведены.

    Источник: ГОСТ Р ИСО 10005-2007: Менеджмент организации. Руководящие указания по планированию качества оригинал документа

    3.11 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующая входные потоки в выходные потоки.

    [ ГОСТ Р ИСО 9000: 2005, определение 3.4.1 (без примечаний)]

    Источник: ГОСТ Р ИСО 14040-2010: Экологический менеджмент. Оценка жизненного цикла. Принципы и структура оригинал документа

    3.11 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующая входные потоки в выходные.

    [ИСО 9000:2005]

    Источник: ГОСТ Р ИСО 14044-2007: Экологический менеджмент. Оценка жизненного цикла. Требования и рекомендации оригинал документа

    2.31 процесс (process): Набор взаимосвязанных или взаимодействующих мероприятий, с помощью которых вложения на входе трансформируются в результаты на выходе.

    [ИСО 9000:2005]

    Источник: ГОСТ Р ИСО 24511-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания для менеджмента коммунальных предприятий и оценке услуг удаления сточных вод оригинал документа

    2.30 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы

    Источник: ГОСТ Р 53647.2-2009: Менеджмент непрерывности бизнеса. Часть 2. Требования оригинал документа

    3.6.29 процесс (process): Структурированный ряд видов деятельности, включающий различные сущности предприятия, предназначенный и организованный для достижения данной цели.

    Примечание - Настоящее определение очень близко определению, приведенному в ИСО 10303-49. Однако для настоящего стандарта необходимо понятие структурированного ряда видов деятельности без какой-либо предопределенной ссылки на время или этапы. Кроме того, с точки зрения управления потоком может возникнуть необходимость в холостых процессах, необходимых для синхронизации, хотя они фактически не делают ничего (выполнение мнимой задачи).

    Источник: ГОСТ Р ИСО 15531-1-2008: Промышленные автоматизированные системы и интеграция. Данные по управлению промышленным производством. Часть 1. Общий обзор оригинал документа

    3.58 процесс (process): Частично упорядоченный набор видов деятельности, который может быть выполнен для достижения определенного желаемого конечного результата для достижения установленной цели.

    Источник: ГОСТ Р ИСО 19439-2008: Интеграция предприятия. Основа моделирования предприятия оригинал документа

    2.31 процесс (process): Набор взаимосвязанных или взаимодействующих мероприятий, с помощью которых вложения на входе трансформируются в результаты на выходе.

    [ИСО 9000:2005]

    Источник: ГОСТ Р ИСО 24510-2009: Деятельность, связанная с услугами питьевого водоснабжения и удаления сточных вод. Руководящие указания по оценке и улучшению услуги, оказываемой потребителям оригинал документа

    2.5 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечание - Для функционирования процесса на него подаются входы, управляющие воздействия и ресурсы.

    Источник: ГОСТ Р 52380.1-2005: Руководство по экономике качества. Часть 1. Модель затрат на процесс оригинал документа

    3.4.1 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечания

    1 Входами к процессу обычно являются выходы других процессов.

    2 Процессы, в организации (3.3.1), как правило, планируются и осуществляются в управляемых условиях с целью добавления ценности.

    3 Процесс, в котором подтверждение соответствия (3.6.1) конечной продукции (3.4.2) затруднено или экономически нецелесообразно, часто относят к «специальному процессу».

    Источник: ГОСТ ISO 9000-2011: Системы менеджмента качества. Основные положения и словарь

    Процессы обработки данных

    84. Процесс обработки данных

    Процесс

    Computational process

    Process

    Система действий, реализующая определенную функцию в системе обработки информации и оформленная так, что управляющая программа данной системы может перераспределять ресурсы этой системы в целях обеспечения мультипрограммирования.

    Примечания:

    1. Процесс характеризуется состояниями, которые определяются наличием тех или иных ресурсов в распоряжении процесса и, следовательно, возможностью фактически выполнять действия, относящиеся к процессу.

    2. Перераспределение ресурсов, выполняемое управляющей программой, влияет на продолжительность процесса обработки данных, но не на его конечный результат.

    3. Процесс оформляют с помощью специальных структур управляющих данных, которыми манипулирует управляющий механизм.

    4. В конкретных системах обработки информации встречаются разновидности процессов, которые различаются способом оформления и составом ресурсов, назначаемых процессу и отнимаемых от него, и допускается вводить специальные названия для таких разновидностей, например задача в операционной системе ОС ЕС ЭВМ.

    Источник: ГОСТ 19781-90: Обеспечение систем обработки информации программное. Термины и определения оригинал документа

    2.25 процесс (process): Упорядоченная совокупность действий, использующая ресурсы для преобразования входных данных в выходные.

    Источник: ГОСТ Р 54581-2011: Информационная технология. Методы и средства обеспечения безопасности. Основы доверия к безопасности ИТ. Часть 1. Обзор и основы оригинал документа

    3.7.52 процесс (process): Набор взаимосвязанных или взаимодействующих видов деятельности, преобразующих входные данные в выходные.

    Примечание 1 - Входами процесса обычно являются выходы других процессов.

    Примечание 2 - Процессы в организации, как правило, планируются и осуществляются в управляемых условиях с целью добавления ценности (ГОСТ Р ИСО 9000, пункт 3.4.1, исключая примечание 3).

    Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа

    6.4 процесс (process): Совокупность взаимосвязанных или взаимодействующих видов деятельности, трансформирующая входные потоки (6.17)в выходные потоки (6.18).

    [ИСО 9000:2005, статья 3.4.1 без примечаний];

    [ИСО 14040:2006]

    Источник: ГОСТ Р ИСО 14050-2009: Менеджмент окружающей среды. Словарь оригинал документа

    3.3 процесс (process): Совокупность взаимосвязанных и взаимодействующих видов деятельности, преобразующая входы в выходы.

    Примечания

    1 Входами к процессу обычно являются выходы других процессов.

    2 Процессы в организации, как правило, планируются и осуществляются в управляемых условиях с целью добавления ценности.

    3 Процесс, в котором подтверждение соответствия конечной продукции затруднено или экономически нецелесообразно, часто относят к «специальному процессу».

    [ ГОСТ Р ИСО 9000-2008, ст. 3.4.1]

    Источник: Р 50.1.069-2009: Менеджмент риска. Рекомендации по внедрению. Часть 2. Определение процесса менеджмента риска

    3.124 процесс (process): Частично упорядоченный набор видов деятельности, который может быть выполнен для достижения определенного желаемого конечного результата для достижения установленной цели.

    Источник: ГОСТ Р 54136-2010: Системы промышленной автоматизации и интеграция. Руководство по применению стандартов, структура и словарь оригинал документа

    Англо-русский словарь нормативно-технической терминологии > process

  • 7 motif

    Характерная последовательность нуклеотидов в нуклеиновых кислотах или аминокислот в полипептидах, часто выполняющая определенные функции (например, ДНК-связывающий М. в некоторых регуляторных белках и т.п.); обозначение «М» обычно употребляется в словосочетаниях - консервативный М. (последовательность, свойственная разным макромолекулам или организмам), повторяющийся М. (мономер повторяющихся участков ДНК) и т.п.
    * * *
    Мотив — – характерная последовательность нуклеотидов в нуклеиновых кислотах или аминокислот в полипептидах, часто выполняющая определенные функции (напр., ДНК-связывающий М. в некоторых регуляторных белках и т.п.); обозначение «М.» обычно употребляется в словосочетаниях — консервативный М. (последовательность, свойственная разным макромолекулам или организмам), повторяющийся М. (мономер повторяющихся участков ДНК) и т.п. М. белковый — комбинация белковых вторичных структур, встречающаяся в разных белках, и имеющая определенную функцию, например: спираль-петля-спираль (helix-loop-helix). Этот мотив является сайтом связывания для атомов кальция. М. ДНК — как правило последовательность оснований, имеющая определенную функцию, как напр., сайт связывания с факторами транскрипции, или сигнал инициации транскрипции ( TATA-box).

    Англо-русский толковый словарь генетических терминов > motif

  • 8 трехфазный источник бесперебойного питания (ИБП)

    1. three-phase UPS

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > трехфазный источник бесперебойного питания (ИБП)

  • 9 three-phase UPS

    1. трехфазный источник бесперебойного питания (ИБП)

     

    трехфазный ИБП
    -
    [Интент]


    Глава 7. Трехфазные ИБП

    ... ИБП большой мощности (начиная примерно с 10 кВА) как правило предназначены для подключения к трехфазной электрической сети. Диапазон мощностей 8-25 кВА – переходный. Для такой мощности делают чисто однофазные ИБП, чисто трехфазные ИБП и ИБП с трехфазным входом и однофазным выходом. Все ИБП, начиная примерно с 30 кВА имеют трехфазный вход и трехфазный выход. Трехфазные ИБП имеют и другое преимущество перед однофазными ИБП. Они эффективно разгружают нейтральный провод от гармоник тока и способствуют более безопасной и надежной работе больших компьютерных систем. Эти вопросы рассмотрены в разделе "Особенности трехфазных источников бесперебойного питания" главы 8. Трехфазные ИБП строятся обычно по схеме с двойным преобразованием энергии. Поэтому в этой главе мы будем рассматривать только эту схему, несмотря на то, что имеются трехфазные ИБП, построенные по схеме, похожей на ИБП, взаимодействующий с сетью.

    Схема трехфазного ИБП с двойным преобразованием энергии приведена на рисунке 18.

    4929
    Рис.18. Трехфазный ИБП с двойным преобразованием энергии

    Как видно, этот ИБП не имеет почти никаких отличий на уровне блок-схемы, за исключением наличия трех фаз. Для того, чтобы увидеть отличия от однофазного ИБП с двойным преобразованием, нам придется (почти впервые в этой книге) несколько подробнее рассмотреть элементы ИБП. Мы будем проводить это рассмотрение, ориентируясь на традиционную технологию. В некоторых случаях будут отмечаться схемные особенности, позволяющие улучшить характеристики.

    Выпрямитель

    Слева на рис 18. – входная электрическая сеть. Она включает пять проводов: три фазных, нейтраль и землю. Между сетью и ИБП – предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП. Выпрямитель в этой схеме – регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры. Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от нвеличины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

    Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов сингусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения. Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

    Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть. Для еще большего снижения искажений, вносимых в сеть, особенно для ИБП большой мощности (более 80-150 кВА) часто применяют 12-импульсные выпрямители. Т.е. за каждый цикл трехфазной сети на входе и выходе выпрямителя возникают 12 импульсов тока. За счет удвоения числа импульсов тока, удается примерно вдвое уменьшить их амплитуду. Это полезно и для аккумуляторов и для электрической сети.

    Двенадцати-импульсный выпрямитель фактически состоит из двух 6-импульсных выпрямителей. На вход второго выпрямителя (он изображен ниже на рис. 18) подается трехфазное напряжение, прошедшее через трансформатор, сдвигающий фазу на 30 градусов.

    В настоящее время применяются также и другие схемы выпрямителей трехфазных ИБП. Например схема с пассивным (диодным) выпрямителем и преобразователем напряжения постоянного тока, применение которого позволяет приблизить потребляемый ток к синусоидальному.

    Наиболее современным считается транзисторный выпрямитель, регулируемый высокочастотной схемой широтно-импульсной модуляции (ШИМ). Применение такого выпрямителя позволяет сделать ток потребления ИБП синусоидальным и совершенно отказаться от 12-импульсных выпрямителей с трансформатором.

    Батарея

    Для формирования батареи трехфазных ИБП (как и в однофазных ИБП) применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы. В некоторых трехфазных ИБП пользователю предлагается фиксированный набор батарей или батарейных шкафов, рассчитанных на различное время работы на автономном режиме. Покупая ИБП других фирм, пользователь может более или менее свободно выбирать батарею своего ИБП (включая ее емкость, тип и количество элементов). В некоторых случаях батарея устанавливается в корпус ИБП, но в большинстве случаев, особенно при большой мощности ИБП, она устанавливается в отдельном корпусе, а иногда и в отдельном помещении.

    Инвертор

    Как и в ИБП малой мощности, в трехфазных ИБП применяются транзисторные инверторы, управляемые схемой широтно-импульсной модуляции (ШИМ). Некоторые ИБП с трехфазным выходом имеют два инвертора. Их выходы подключены к трансформаторам, сдвигающим фазу выходных напряжений. Даже в случае применения относительно низкочастоной ШИМ, такая схема совместно с применением фильтра переменного тока, построенного на трансформаторе и конденсаторах, позволяет обеспечить очень малый коэффициент гармонических искажений на выходе ИБП (до 3% на линейной нагрузке). Применение двух инверторов увеличивает надежность ИБП, поскольку даже при выходе из строя силовых транзисторов одного из инверторов, другой инвертор обеспечит работу нагрузки, пусть даже при большем коэффициенте гармонических искажений.

    В последнее время, по мере развития технологии силовых полупроводников, начали применяться более высокочастотные транзисторы. Частота ШИМ может составлять 4 и более кГц. Это позволяет уменьшить гармонические искажения выходного напряжения и отказаться от применения второго инвертора. В хороших ИБП существуют несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125% номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки – от долей секунды до минут) переключается на работу через статический байпас. В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

    Некоторые современные высококлассные ИБП (с высокочакстотной ШИМ) имеют две цепи регулирования выходного напряжения. Первая из них осуществляет регулирование среднеквадратичного (действующего) значения напряжения, независимо для каждой из фаз. Вторая цепь измеряет мгновенные значения выходного напряжения и сравнивает их с хранящейся в памяти блока управления ИБП идеальной синусоидой. Если мгновенное значение напряжения отклонилось от соотвествующего "идеального" значения, то вырабатывается корректирующий импульс и форма синусоиды выходного напряжения исправляется. Наличие второй цепи обратной связи позволяет обеспечить малые искажения формы выходного напряжения даже при нелинейных нагрузках.

    Статический байпас

    Блок статического байпаса состоит из двух трехфазных (при трехфазном выходе) тиристорных переключателей: статического выключателя инвертора (на схеме – СВИ) и статического выключателя байпаса (СВБ). При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

    Каждая модель ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. При покупке ИБП бывает полезно узнать эту логику и понять, насколько она соответствует вашей технологии работы. В частности хорошие ИБП сконструированы так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса – см. главу 6) в любом случае постараться обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

    Статический байпас ИБП с трехфазным входом и однофазным выходом имеет особенность. Нагрузка, распределенная на входе ИБП по трем фазным проводам, на выходе имеет только два провода: один фазный и нейтральный. Статический байпас тоже конечно однофазный, и синхронизация напряжения инвертора производится относительно одной из фаз трехфазной сети (любой, по выбору пользователя). Вся цепь, подводящая напряжение к входу статического байпаса должна выдерживать втрое больший ток, чем входной кабель выпрямителя ИБП. В ряде случаев это может вызвать трудности с проводкой.

    Сервисный байпас

    Трехфазные ИБП имеют большую мощность и обычно устанавливаются в местах действительно критичных к электропитанию. Поэтому в случае выхода из строя какого-либо элемента ИБП или необходимости проведения регламентных работ (например замены батареи), в большинстве случае нельзя просто выключить ИБП или поставить на его место другой. Нужно в любой ситуации обеспечить электропитание нагрузки. Для этих ситуаций у всех трехфазных ИБП имеется сервисный байпас. Он представляет собой ручной переключатель (иногда как-то заблокированный, чтобы его нельзя было включить по ошибке), позволяющий переключить нагрузку на питание непосредственно от сети. У большинства ИБП для переключения на сервисный байпас существует специальная процедура (определенная последовательность действий), которая позволяет обеспечит непрерывность питания при переключениях.

    Режимы работы трехфазного ИБП с двойным преобразованием

    Трехфазный ИБП может работать на четырех режимах работы.

    • При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.
    • Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.
    • Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.
    • Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

    Надежность

    Трехфазные ИБП обычно предназначаются для непрерывной круглосуточной работы. Работа нагрузки должна обеспечиваться практически при любых сбоях питания. Поэтому к надежности трехфазных ИБП предъявляются очень высокие требования. Вот некоторые приемы, с помощью которых производители трехфазных ИБП могут увеличивать надежность своей продукции. Применение разделительных трансформаторов на входе и/или выходе ИБП увеличивает устойчивость ИБП к скачкам напряжения и нагрузки. Входной дроссель не только обеспечивает "мягкий запуск", но и защищает ИБП (и, в конечном счете, нагрузку) от очень быстрых изменений (скачков) напряжения.

    Обычно фирма выпускает целый ряд ИБП разной мощности. В двух или трех "соседних по мощности" ИБП этого ряда часто используются одни и те же полупроводники. Если это так, то менее мощный из этих двух или трех ИБП имеет запас по предельному току, и поэтому несколько более надежен. Некоторые трехфазные ИБП имеют повышенную надежность за счет резервирования каких-либо своих цепей. Так, например, могут резервироваться: схема управления (микропроцессор + платы "жесткой логики"), цепи управления силовыми полупроводниками и сами силовые полупроводники. Батарея, как часть ИБП тоже вносит свой вклад в надежность прибора. Если у ИБП имеется возможность гибкого выбора батареи, то можно выбрать более надежный вариант (батарея более известного производителя, с меньшим числом соединений).

    Преобразователи частоты

    Частота напряжения переменного тока в электрических сетях разных стран не обязательно одинакова. В большинстве стран (в том числе и в России) распространена частота 50 Гц. В некоторых странах (например в США) частота переменного напряжения равна 60 Гц. Если вы купили оборудование, рассчитанное на работу в американской электрической сети (110 В, 60 Гц), то вы должны каким-то образом приспособить к нему нашу электрическую сеть. Преобразование напряжения не является проблемой, для этого есть трансформаторы. Если оборудование оснащено импульсным блоком питания, то оно не чувствительно к частоте и его можно использовать в сети с частотой 50 Гц. Если же в состав оборудования входят синхронные электродвигатели или иное чувствительное к частоте оборудование, вам нужен преобразователь частоты. ИБП с двойным преобразованием энергии представляет собой почти готовый преобразователь частоты.

    В самом деле, ведь выпрямитель этого ИБП может в принципе работать на одной частоте, а инвертор выдавать на своем выходе другую. Есть только одно принципиальное ограничение: невозможность синхронизации инвертора с линией статического байпаса из-за разных частот на входе и выходе. Это делает преобразователь частоты несколько менее надежным, чем сам по себе ИБП с двойным преобразованием. Другая особенность: преобразователь частоты должен иметь мощность, соответствующую максимальному возможному току нагрузки, включая все стартовые и аварийные забросы, ведь у преобразователя частоты нет статического байпаса, на который система могла бы переключиться при перегрузке.

    Для изготовления преобразователя частоты из трехфазного ИБП нужно разорвать цепь синхронизации, убрать статический байпас (или, вернее, не заказывать его при поставке) и настроить инвертор ИБП на работу на частоте 60 Гц. Для большинства трехфазных ИБП это не представляет проблемы, и преобразователь частоты может быть заказан просто при поставке.

    ИБП с горячим резервированием

    В некоторых случаях надежности даже самых лучших ИБП недостаточно. Так бывает, когда сбои питания просто недопустимы из-за необратимых последствий или очень больших потерь. Обычно в таких случаях в технике применяют дублирование или многократное резервирование блоков, от которых зависит надежность системы. Есть такая возможность и для трехфазных источников бесперебойного питания. Даже если в конструкцию ИБП стандартно не заложено резервирование узлов, большинство трехфазных ИБП допускают резервирование на более высоком уровне. Резервируется целиком ИБП. Простейшим случаем резервирования ИБП является использование двух обычных серийных ИБП в схеме, в которой один ИБП подключен к входу байпаса другого ИБП.

    4930

    Рис. 19а. Последовательное соединение двух трехфазных ИБП

    На рисунке 19а приведена схема двух последовательно соединенным трехфазных ИБП. Для упрощения на рисунке приведена, так называемая, однолинейная схема, на которой трем проводам трехфазной системы переменного тока соответствует одна линия. Однолинейные схемы часто применяются в случаях, когда особенности трехфазной сети не накладывают отпечаток на свойства рассматриваемого прибора. Оба ИБП постоянно работают. Основной ИБП питает нагрузку, а вспомогательный ИБП работает на холостом ходу. В случае выхода из строя основного ИБП, нагрузка питается не от статического байпаса, как в обычном ИБП, а от вспомогательного ИБП. Только при выходе из строя второго ИБП, нагрузка переключается на работу от статического байпаса.

    Система из двух последовательно соединенных ИБП может работать на шести основных режимах.

    А. Нормальная работа. Выпрямители 1 и 2 питают инверторы 1 и 2 и, при необходимости заряжают батареи 1 и 2. Инвертор 1 подключен к нагрузке (статический выключатель инвертора 1 замкнут) и питает ее стабилизированным и защищенным от сбоев напряжением. Инвертор 2 работает на холостом ходу и готов "подхватить" нагрузку, если инвертор 1 выйдет из строя. Оба статических выключателя байпаса разомкнуты.

    Для обычного ИБП с двойным преобразованием на режиме работы от сети допустим (при сохранении гарантированного питания) только один сбой в системе. Этим сбоем может быть либо выход из строя элемента ИБП (например инвертора) или сбой электрической сети.

    Для двух последовательно соединенных ИБП с на этом режиме работы допустимы два сбоя в системе: выход из строя какого-либо элемента основного ИБП и сбой электрической сети. Даже при последовательном или одновременном возникновении двух сбоев питание нагрузки будет продолжаться от источника гарантированного питания.

    Б. Работа от батареи 1. Выпрямитель 1 не может питать инвертор и батарею. Чаще всего это происходит из-за отключения напряжения в электрической сети, но причиной может быть и выход из строя выпрямителя. Состояние инвертора 2 в этом случае зависит от работы выпрямителя 2. Если выпрямитель 2 работает (например он подключен к другой электрической сети или он исправен, в отличие от выпрямителя 1), то инвертор 2 также может работать, но работать на холостом ходу, т.к. он "не знает", что с первым ИБП системы что-то случилось. После исчерпания заряда батареи 1, инвертор 1 отключится и система постарается найти другой источник электроснабжения нагрузки. Им, вероятно, окажется инвертор2. Тогда система перейдет к другому режиму работы.

    Если в основном ИБП возникает еще одна неисправность, или батарея 1 полностью разряжается, то система переключается на работу от вспомогательного ИБП.

    Таким образом даже при двух сбоях: неисправности основного ИБП и сбое сети нагрузка продолжает питаться от источника гарантированного питания.

    В. Работа от инвертора 2. В этом случае инвертор 1 не работает (из-за выхода из строя или полного разряда батареи1). СВИ1 разомкнут, СВБ1 замкнут, СВИ2 замкнут и инвертор 2 питает нагрузку. Выпрямитель 2, если в сети есть напряжение, а сам выпрямитель исправен, питает инвертор и батарею.

    На этом режиме работы допустим один сбой в системе: сбой электрической сети. При возникновении второго сбоя в системе (выходе из строя какого-либо элемента вспомогательного ИБП) электропитание нагрузки не прерывается, но нагрузка питается уже не от источника гарантированного питания, а через статический байпас, т.е. попросту от сети.

    Г. Работа от батареи 2. Наиболее часто такая ситуация может возникнуть после отключения напряжения в сети и полного разряда батареи 1. Можно придумать и более экзотическую последовательность событий. Но в любом случае, инвертор 2 питает нагругку, питаясь, в свою очередь, от батареи. Инвертор 1 в этом случае отключен. Выпрямитель 1, скорее всего, тоже не работает (хотя он может работать, если он исправен и в сети есть напряжение).

    После разряда батареи 2 система переключится на работу от статического байпаса (если в сети есть нормальное напряжение) или обесточит нагрузку.

    Д. Работа через статический байпас. В случае выхода из строя обоих инверторов, статические переключатели СВИ1 и СВИ2 размыкаются, а статические переключатели СВБ1 и СВБ2 замыкаются. Нагрузка начинает питаться от электрической сети.

    Переход системы к работе через статический байпас происходит при перегрузке системы, полном разряде всех батарей или в случае выхода из строя двух инверторов.

    На этом режиме работы выпрямители, если они исправны, подзаряжают батареи. Инверторы не работают. Нагрузка питается через статический байпас.

    Переключение системы на работу через статический байпас происходит без прерывания питания нагрузки: при необходимости переключения сначала замыкается тиристорный переключатель статического байпаса, и только затем размыкается тиристорный переключатель на выходе того инвертора, от которого нагрузка питалась перед переключением.

    Е. Ручной (сервисный) байпас. Если ИБП вышел из строя, а ответственную нагрузку нельзя обесточить, то оба ИБП системы с соблюдением специальной процедуры (которая обеспечивает безразрыное переключение) переключают на ручной байпас. после этого можно производить ремонт ИБП.

    Преимуществом рассмотренной системы с последовательным соединением двух ИБП является простота. Не нужны никакие дополнительные элементы, каждый из ИБП работает в своем штатном режиме. С точки зрения надежности, эта схема совсем не плоха:- в ней нет никакой лишней, (связанной с резервированием) электроники, соответственно и меньше узлов, которые могут выйти из строя.

    Однако у такого соединения ИБП есть и недостатки. Вот некоторые из них.
     

    1. Покупая такую систему, вы покупаете второй байпас (на нашей схеме – он первый – СВБ1), который, вообще говоря, не нужен – ведь все необходимые переключения могут быть произведены и без него.
    2. Весь второй ИБП выполняет только одну функцию – резервирование. Он потребляет электроэнергию, работая на холостом ходу и вообще не делает ничего полезного (разумеется за исключением того времени, когда первый ИБП отказывается питать нагрузку). Некоторые производители предлагают "готовые" системы ИБП с горячим резервированием. Это значит, что вы покупаете систему, специально (еще на заводе) испытанную в режиме с горячим резервированием. Схема такой системы приведена на рис. 19б.

    4931

    Рис.19б. Трехфазный ИБП с горячим резервированием

    Принципиальных отличий от схемы с последовательным соединением ИБП немного.

    1. У второго ИБП отсутствует байпас.
    2. Для синхронизации между инвертором 2 и байпасом появляется специальный информационный кабель между ИБП (на рисунке не показан). Поэтому такой ИБП с горячим резервированием может работать на тех же шести режимах работы, что и система с последовательным подключением двух ИБП. Преимущество "готового" ИБП с резервированием, пожалуй только одно – он испытан на заводе-производителе в той же комплектации, в которой будет эксплуатироваться.

    Для расмотренных схем с резервированием иногда применяют одно важное упрощение системы. Ведь можно отказаться от резервирования аккумуляторной батареи, сохранив резервирование всей силовой электроники. В этом случае оба ИБП будут работать от одной батареи (оба выпрямителя будут ее заряжать, а оба инвертора питаться от нее в случае сбоя электрической сети). Применение схемы с общей бетареей позволяет сэкономить значительную сумму – стоимость батареи.

    Недостатков у схемы с общей батареей много:

    1. Не все ИБП могут работать с общей батареей.
    2. Батарея, как и другие элементы ИБП обладает конечной надежностью. Выход из строя одного аккумулятора или потеря контакта в одном соединении могут сделать всю системы ИБП с горячим резервирование бесполезной.
    3. В случае выхода из строя одного выпрямителя, общая батарея может быть выведена из строя. Этот последний недостаток, на мой взгляд, является решающим для общей рекомендации – не применять схемы с общей батареей.


    Параллельная работа нескольких ИБП

    Как вы могли заметить, в случае горячего резервирования, ИБП резервируется не целиком. Байпас остается общим для обоих ИБП. Существует другая возможность резервирования на уровне ИБП – параллельная работа нескольких ИБП. Входы и выходы нескольких ИБП подключаются к общим входным и выходным шинам. Каждый ИБП сохраняет все свои элементы (иногда кроме сервисного байпаса). Поэтому выход из строя статического байпаса для такой системы просто мелкая неприятность.

    На рисунке 20 приведена схема параллельной работы нескольких ИБП.

    4932

    Рис.20. Параллельная работа ИБП

    На рисунке приведена схема параллельной системы с раздельными сервисными байпасами. Схема система с общим байпасом вполне ясна и без чертежа. Ее особенностью является то, что для переключения системы в целом на сервисный байпас нужно управлять одним переключателем вместо нескольких. На рисунке предполагается, что между ИБП 1 и ИБП N Могут располагаться другие ИБП. Разные производителю (и для разных моделей) устанавливают свои максимальные количества параллеьно работающих ИБП. Насколько мне известно, эта величина изменяется от 2 до 8. Все ИБП параллельной системы работают на общую нагрузку. Суммарная мощность параллельной системы равна произведению мощности одного ИБП на количество ИБП в системе. Таким образом параллельная работа нескольких ИБП может применяться (и в основном применяется) не столько для увеличения надежности системы бесперебойного питания, но для увеличения ее мощности.

    Рассмотрим режимы работы параллельной системы

    Нормальная работа (работа от сети). Надежность

    Когда в сети есть напряжение, достаточное для нормальной работы, выпрямители всех ИБП преобразуют переменное напряжение сети в постоянное, заряжая батареи и питая инверторы.

    Инверторы, в свою очередь, преобразуют постоянное напряжение в переменное и питают нагрузку. Специальная управляющая электроника параллельной системы следит за равномерным распределением нагрузки между ИБП. В некоторых ИБП распределение нагрузки между ИБП производится без использования специальной параллельной электроники. Такие приборы выпускаются "готовыми к параллельной работе", и для использования их в параллельной системе достаточно установить плату синхронизации. Есть и ИБП, работающие параллельго без специальной электроники. В таком случае количество параллельно работающих ИБП – не более двух. В рассматриваемом режиме работы в системе допустимо несколько сбоев. Их количество зависит от числа ИБП в системе и действующей нагрузки.

    Пусть в системе 3 ИБП мощностью по 100 кВА, а нагрузка равна 90 кВА. При таком соотношении числа ИБП и их мощностей в системе допустимы следующие сбои.

    Сбой питания (исчезновение напряжения в сети)

    Выход из строя любого из инверторов, скажем для определенности, инвертора 1. Нагрузка распределяется между двумя другими ИБП. Если в сети есть напряжение, все выпрямители системы работают.

    Выход из строя инвертора 2. Нагрузка питается от инвертора 3, поскольку мощность, потребляемая нагрузкой меньше мощности одного ИБП. Если в сети есть напряжение, все выпрямители системы продолжают работать.

    Выход из строя инвертора 3. Система переключается на работу через статический байпас. Нагрузка питается напрямую от сети. При наличии в сети нормального напряжения, все выпрямители работают и продолжают заряжать батареи. При любом последующем сбое (поломке статического байпаса или сбое сети) питание нагрузки прекращается. Для того, чтобы параллельная система допускала большое число сбоев, система должна быть сильно недогружена и должна включать большое число ИБП. Например, если нагрузка в приведенном выше примере будет составлять 250 кВА, то система допускает только один сбой: сбой сети или поломку инвертора. В отношении количества допустимых сбоев такая система эквивалентна одиночному ИБП. Это, кстати, не значит, что надежность такой параллельной системы будет такая же, как у одиночного ИБП. Она будет ниже, поскольку параллельная система намного сложнее одиночного ИБП и (при почти предельной нагрузке) не имеет дополнительного резервирования, компенсирующего эту сложность.

    Вопрос надежности параллельной системы ИБП не может быть решен однозначно. Надежность зависит от большого числа параметров: количества ИБП в системе (причем увеличение количества ИБП до бесконечности снижает надежность – система становится слишком сложной и сложно управляемой – впрочем максимальное количество параллельно работающих модулей для известных мне ИБП не превышает 8), нагрузки системы (т.е. соотношения номинальной суммарной мощности системы и действующей нагрузки), примененной схемы параллельной работы (т.е. есть ли в системе специальная электроника для обеспечения распределения нагрузки по ИБП), технологии работы предприятия. Таким образом, если единственной целью является увеличение надежности системы, то следует серьезно рассмотреть возможность использование ИБП с горячим резервированием – его надежность не зависит от обстоятельств и в силу относительной простоты схемы практически всегда выше надежности параллельной системы.

    Недогруженная система из нескольких параллельно работающих ИБП, которая способна реализвать описанную выше логику управления, часто также называется параллельной системой с резервированием.

    Работа с частичной нагрузкой

    Если нагрузка параллельной системы такова, что с ней может справиться меньшее, чем есть в системе количество ИБП, то инверторы "лишних" ИБП могут быть отключены. В некоторых ИБП такая логика управления подразумевается по умолчанию, а другие модели вообще лишены возможности работы в таком режиме. Инверторы, оставшиеся включенными, питают нагрузку. Коэффициент полезного действия системы при этом несколько возрастает. Обычно в этом режиме работы предусматривается некоторая избыточность, т.е. количестов работающих инверторов больше, чем необходимо для питания нагрузки. Тем самым обеспечивается резервирование. Все выпрямители системы продолжают работать, включая выпрямители тех ИБП, инверторы которых отключены.

    Работа от батареи

    В случае исчезновения напряжения в электрической сети, параллельная система переходит на работу от батареи. Все выпрямители системы не работают, инверторы питают нагрузку, получая энергию от батареи. В этом режиме работы (естественно) отсутствует напряжение в электрической сети, которое при нормальной работе было для ИБП не только источником энергии, но и источником сигнала синхронизации выходного напряжения. Поэтому функцию синхронизации берет на себя специальная параллельная электроника или выходная цепь ИБП, специально ориентированная на поддержание выходной частоты и фазы в соответствии с частотой и фазой выходного напряжения параллельно работающего ИБП.

    Выход из строя выпрямителя

    Это режим, при котором вышли из строя один или несколько выпрямителей. ИБП, выпрямители которых вышли из строя, продолжают питать нагрузку, расходуя заряд своей батареи. Они выдает сигнал "неисправность выпрямителя". Остальные ИБП продолжают работать нормально. После того, как заряд разряжающихся батарей будет полностью исчерпан, все зависит от соотношения мощности нагрузки и суммарной мощности ИБП с исправными выпрямителями. Если нагрузка не превышает перегрузочной способности этих ИБП, то питание нагрузки продолжится (если у системы остался значительный запас мощности, то в этом режиме работы допустимо еще несколько сбоев системы). В случае, если нагрузка ИБП превышает перегрузочную способность оставшихся ИБП, то система переходит к режиму работы через статический байпас.

    Выход из строя инвертора

    Если оставшиеся в работоспособном состоянии инверторы могут питать нагрузку, то нагрузка продолжает работать, питаясь от них. Если мощности работоспособных инверторов недостаточно, система переходит в режим работы от статического байпаса. Выпрямители всех ИБП могут заряжать батареи, или ИБП с неисправными инверторами могут быть полностью отключены для выполнения ремонта.

    Работа от статического байпаса

    Если суммарной мощности всех исправных инверторов параллельной системы не достаточно для поддержания работы нагрузки, система переходит к работе через статический байпас. Статические переключатели всех инверторов разомкнуты (исправные инверторы могут продолжать работать). Если нагрузка уменьшается, например в результате отключения части оборудования, параллельная система автоматически переключается на нормальный режим работы.

    В случае одиночного ИБП с двойным преобразованием работа через статический байпас является практически последней возможностью поддержания работы нагрузки. В самом деле, ведь достаточно выхода из строя статического переключателя, и нагрузка будет обесточена. При работе параллельной системы через статический байпас допустимо некоторое количество сбоев системы. Статический байпас способен выдерживать намного больший ток, чем инвертор. Поэтому даже в случае выхода из строя одного или нескольких статических переключателей, нагрузка возможно не будет обесточена, если суммарный допустимый ток оставшихся работоспособными статических переключателей окажется достаточен для работы. Конкретное количество допустимых сбоев системы в этом режиме работы зависит от числа ИБП в системе, допустимого тока статического переключателя и величины нагрузки.

    Сервисный байпас

    Если нужно провести с параллельной системой ремонтные или регламентные работы, то система может быть отключена от нагрузки с помощью ручного переключателя сервисного байпаса. Нагрузка питается от сети, все элементы параллельной системы ИБП, кроме батарей, обесточены. Как и в случае системы с горячим резервированием, возможен вариант одного общего внешнего сервисного байпаса или нескольких сервисных байпасов, встроенных в отдельные ИБП. В последнем случае при использовании сервисного байпаса нужно иметь в виду соотношение номинального тока сервисного байпаса и действующей мощности нагрузки. Другими словами, нужно включить столько сервисных байпасов, чтобы нагрузка не превышала их суммарный номинальных ток.
    [ http://www.ask-r.ru/info/library/ups_without_secret_7.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > three-phase UPS

  • 10 program

    I = library routine
    II
    1) (prgm) - программа
    а) последовательность команд на каком-либо языке программирования (формальном языке) или команд процессора, описывающая решение определённой задачи.

    From a mathematical point of view, a program defines a function. — С математической тоски зрения программа определяет некоторую функцию см. тж. application program, background program, canned program, draw program, executable program, linear program, main program, overlay, program counter, program design, program file, program flow, program generator, program logic, program memory, program step, software, utility

    б) в DVD-Video - последовательность аудио-или видеоданных; группа ячеек (cell) в программной цепочке (program chain)
    2) план занятий, учебная программа
    3) план действий, последовательность операций
    4) глаг. составлять программу, программировать
    см. тж. program design

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > program

  • 11 сигнал полиаденилирования

    = сайт полиаденилирования
    [лат. signum — знак; греч. poly — много, англ. adenine — аденин, от греч. adenжелеза и лат. - in(e) — суффикс, обозначающий "подобный"]
    короткая нуклеотидная последовательность (каноническая нуклеотидная последовательность — AAУAAA), рас-положенная в 3'-некодирующей области гена за 10—20 н. до его конца, которая ответственна за окончание транскрипции мРНК и определяет ядерное ферментативное присоединение к 3'-концу мРНК от 14—16 (у прокариот) до 200 (у эукариот) остатков аденина (см. аденин). Существуют данные, что функцию С.п. может выполнять также У-богатая нуклеотидная последовательность, расположенная за канонической нуклеотидной последовательностью ААУААА.

    Толковый биотехнологический словарь. Русско-английский. > сигнал полиаденилирования

  • 12 Hogness box

    бокс Хогнесса, ТАТА-бокс
    Специфическая последовательность нуклеотидов, присутствующая в промоторных областях генов эукариот (часто в положении [-25]); обобщенная структура Б.Х. ТАТА(АТ)А(АТ); выполняет регуляторную функцию - участвует в инициации транскрипции, обеспечивая ориентацию РНК-полимеразы RNA polymerase относительно промотора, функционально эквивалентен боксу Прибнова Pribnow box у прокариот.
    * * *
    TATA-бокс, б. Хогнесса, Голдберга-Хогнесса бокс — AT-богатая область с консенсусной последовательностью TATAT/AAT/A (для растений TATAAATA), присутствующая в промоторных областях генов и чаще всегорасполагающаяся через 15 — 32 п. о. (у дрожжей 60 — 120 п.о.) вверх от сайта инициации транскрипции у эукариотных структурных генов. TATA-б. является аналогом прокариотического Прибнов бокса (см. Последовательность Прибнова) и сайтом связывания для транскрипционных факторов (транскрипционный фактор II D). Бокс важен для точной инициации транскрипции, т. к. обеспечивает ориентацию РНК-полимеразы относительно промотора, но не имеет значения для количественной экспрессии. Обобщенная формула ТАТА-б. — ТАТА(АТ)А(АТ).

    Англо-русский толковый словарь генетических терминов > Hogness box

  • 13 germ track

    1. Последовательность клеточных делений у многоклеточных животных, заранее определенная зародышевыми клетками. З. п. начинается с зиготы и завершается образованием функционально способных гамет. Генеративные клетки противопоставляются массе соматических клеток, или клеток тела, которые также происходят от клеток З. п., но затем в результате специфической дифференцировки приобретают определенную функцию, что может сопровождаться изменением числа хромосом. Разделение процессов развития зародышевых и соматических клеток происходит в раннем онтогенезе, поэтому процесс развития генеративных клеток может быть прослежен до очень ранней точки развития, иногда до первого деления зиготы. Т. обр., генеративные и соматические клетки представляют собой продукты процесса гистогенетической дифференцировки. Этот З. п. описан А. Вейсманом, а в 1889 г. определен Х. де Фризом как главный З. п.
    2. Последовательность клеточных поколений, которая у растительных объектов завершается образованием зародышевых клеток через адвентивные почки, т. е. точки роста, возникающие в участках уже дифференцированной ткани. По Х. де Фризу, это т. н. побочный З. п.

    Англо-русский толковый словарь генетических терминов > germ track

  • 14 technique

    технический приём, способ, метод; методика

    agar-filtration technique метод агар-фильтрации (метод предварительной концентрации и частичной очистки вирионов перед иммуноэлектронной микроскопией)

    antibody-coated grid technique метод ( иммуноэлектронной микроскопии) с иммобилизованными на подложке антителами

    antigen-coated grid technique метод ( иммуноэлектронной микроскопии) с иммобилизованными на подложке антигенами

    antigen-pulsing technique метод примирования антигеном (метод оценки способности процессированного в макрофагах антигена активировать сингенные T-лимфоциты)

    azo-dye technique — техника азоокрашивания, метод Пирса ( метод гистохимического выявления кислой фосфатазы)

    bronchial challenge technique — бронхоспастическая проба с аллергеном, бронхопровокационный аллерготест

    cell-distance technique метод ( подсчёта) межклеточных интервалов (метод определения расстояний, пройденных клетками различных популяций от поверхности монослоя, при определении хемотаксической активности лейкоцитов в культуре)

    colony technique — метод колоний, метод колониеобразования

    cosmid walking technique — метод скрининга космид, метод космидной «прогулки»

    coupling technique — метод связывания, метод пришивки; реакция синтеза ( полимера)

    Craig's technique ( антитоксиновая) проба Крейга

    direct intrasplenic injection technique метод прямой внутриселезёночной инъекции (метод оценки потенции колониеобразующей единицы селезёнки без поправки на хоминг-эффект)

    double labeling technique — метод двойных антител, сэндвич-метод

    exon-shuffling technique — метод «перетасовки экзонов»

    extracellular quenching technique — метод [техника] внеклеточного гашения (метод изучения фагоцитоза с помощью хемилюминесцентного анализа с гашением флуоресценции непоглощённых бактерий)

    Feinberg's technique — метод Файнберга, метод градиентных планшетов ( метод постановки реакции двойной двумерной иммунодиффузии)

    fingerprinting technique — метод пептидных карт, метод «отпечатков пальцев», фингерпринт-метод

    fluorescent antibody technique — метод флуоресцирующих антител, иммунофлуоресцентный метод

    Folin-Ciocalteau technique — метод Лоури, метод Фолина-Чикальтеу ( метод определения содержания белка)

    genomic walking technique — метод «прогулки вдоль хромосомы» ( один из методов скрининга геномов)

    Grabar-Williams immunoelectrophoretic technique — метод иммуноэлектрофореза по Грабарю и Уильямсу, метод иммуноэлектрофореза с последующей иммунопреципитацией

    gradient-plate technique — метод Файнберга, метод градиентных планшетов ( метод постановки реакции двойной двумерной иммунодиффузии)

    gradient-tube technique — метод Хейворда-Огюстина, метод иммунодиффузии в пробирках с градиентным гелем

    hapten-sandwich technique — «бигаптеновый» метод, сэндвич-гаптеновый метод (оценки эффекта TH-клеток на функцию B-лимфоцитов без их связывания с антигеном)

    Hayward-Augustin technique — метод Хейворда-Огюстина, метод иммунодиффузии в пробирках с градиентным гелем

    heat shock technique — метод теплового шока, хитшоковый метод

    hemolysis-in-gel technique реакция ( локального) гемолиза в геле

    Holm-Wadsworth technique — метод Хольма-Вудсворта, метод камерных планшетов

    hot antigen suicide technique метод самоубийства радиоактивного антигена (метод ингибирования антиген-специфической функции лимфоцитов путём адгезии антигена, меченного высокоактивным изотопом, с антигенсвязывающим лимфоцитом и последующим его радиолизом)

    hybrid antibody technique — метод гибридных [гетероспецифических] антител (метод иммуноэлектронной микроскопии с использованием антител, несущих Fab-фрагменты различной специфичности)

    immunoadherence technique — метод иммунной адгезии, метод иммунного прилипания, иммуноадгезионный метод

    immunoenzyme bridge technique — иммуноферментный «мостиковый» метод ( с использованием системы двойных антител)

    immunofluorescence spot technique — метод флуоресцирующих антител к клеточной поверхности, точечный иммунофлуоресцентный метод

    immunofluorescent technique — метод флуоресцирующих антител, иммунофлуоресцентный метод

    Jenning's technique — метод целеуказанной двойной диффузии в геле, метод Дженнинга

    Kaminski-Wright technique метод Каминского-Райта (количественный иммунодиффузионный метод определения оптимальных соотношений в реакции антиген-антитело)

    killing technique — цитолитический метод, метод лизиса клеток

    Laurell's technique — метод ракетного иммуноэлектрофореза по Лауреллу, метод однонаправленной простой электроиммунодиффузии

    leading-front technique метод лидирующей границы (метод определения хемотаксиса лейкоцитов путём измерения расстояния, пройденного быстромигрирующими клетками)

    micropore technique — 1) метод ультрафильтрации 2) метод миллипоровых [диффузионных] камер

    microsectioning technique метод ( подсчёта) межклеточных интервалов (метод определения расстояний, пройденных клетками различных популяций от поверхности монослоя, при определении хемотаксической активности лейкоцитов в культуре)

    microwell pseudoreplica immunoelectron microscopy technique — метод иммуноэлектронной микроскопии с использованием микролуночных псевдореплик

    monolayer technique — метод монослоя, метод ( культивирования) в монослое

    multiple-puncture technique метод множественных инъекций (метод получения антисывороток путём инъекции антигена в различные участки поверхности тела особи)

    multiple-site technique метод множественных инъекций (метод получения антисывороток путём инъекции антигена в различные участки поверхности тела особи)

    Nothern blotting technique назерн-блоттинг (метод определения фрагмента РНК, содержащего искомую последовательность, путём гибридизации разделённых электрофорезом фрагментов с радиоактивным зондом)

    no touch technique — метод обязательной дотрансплантационной криоперфузии, органосохранная техника криоперфузии

    Oakley-Fulthorpe technique — метод Оукли-Фулторпа, метод двойной однонаправленной иммунодиффузии

    objective double diffusion plate technique — метод целеуказанной двойной диффузии в геле, метод Дженнинга

    Oss-Bronson technique — иммунореофорез, метод Осса-Бронсона ( двойная двумерная иммунодиффузия в геле)

    panning technique — «пэннинг»-метод (метод фракционирования и сортировки клеток путём просеивания их через сорбент с иммобилизованными антителами или антигенами)

    paraffin-embedding technique — техника заключения [техника заливки] в парафин, техника приготовления парафиновых срезов

    patch-clamp technique — метод «открытия-закрытия» (метод оценки проницаемости клеточных ионных каналов с использованием пэтч-пипеток)

    plate chamber technique — метод Хольма-Вудсворта, метод камерных планшетов

    protein A-coated bacteria technique — метод иммобилизованных стафилококков, содержащих протеин A

    protein A-coated grid technique метод ( иммуноэлектронной микроскопии) с иммобилизованным на подложке протеином A

    radioimmunolocalization technique — радиоиммунотопографический метод, метод радиоиммунолокализации (метод анализа тканевой локализации антигена с помощью радиомеченых антител)

    Raja cell technique метод Raja-клеток (метод подсчёта прикрепившихся к Raja-клеткам комплемент-содержащих иммунных комплексов)

    Rebuck's technique — метод Ребака, метод «кожных окошек» (метод количественной оценки реакции кожной гиперчувствительности на аллерген, путём определения хемотаксической активности клеток, мигрировавших на покровном стекле из участка скарификации)

    Richardson's technique методика Ричардсона (способ получения лиофилизированного комплемента из свежевыделенной сыворотки морской свинки)

    rosetting technique — метод розеткообразования, метод розеток

    sequential fusion technique — методика поэтапного слияния, каскадный метод ( получения и идентификации гибридом к минорным антигенам)

    Sewell's technique метод Сьюэлла (количественный иммунодиффузионный метод определения оптимальных соотношений антиген-антитело)

    single radial immunodiffusion technique — метод простой радиальной иммунодиффузии, метод Манчини

    skin chamber technique — метод Ребака, метод «кожных окошек» (метод количественной оценки реакции кожной гиперчувствительности на аллерген, путём определения хемотаксической активности клеток, мигрировавших на покровном стекле из участка скарификации)

    skin window technique — метод Ребака, метод «кожных окошек» (метод количественной оценки реакции кожной гиперчувствительности на аллерген, путём определения хемотаксической активности клеток, мигрировавших на покровном стекле из участка скарификации)

    Southern blotting technique — блоттинг-метод по Саузерну, Саузерн-блоттинг (метод определения фрагмента ДНК, содержащего искомый ген, путём гибридизации разделённых электрофорезом фрагментов с радиоактивным зондом)

    spleen colony technique — метод селезёночных колоний, метод Тилла и Мак-Куллоха

    suiciding technique — метод «самоубийства» (метод массовой гибели активнопролиферирующих клеток путём добавления в культуру этих клеток избытка радиоактивного тимидина)

    Svendsen's immunoelectrophoretic technique — метод слитного ракетного иммуноэлектрофореза, метод Свендсена

    two pulse technique — метод «двух стимулов», метод Медавара ( метод приготовления антилимфоцитарной антисыворотки)

    Western blotting technique вестерн-блоттинг (метод определения искомого белка в сложной белковой смеси путём гибридизации разделённых электрофорезом белков с меченым зондом, напр. антителом)

    Англо-русский словарь по иммунологии > technique

  • 15 nonsense codon

    нонсенс-кодон, бессмысленный кодон
    Кодон, не кодирующий аминокислоту, терминатор трансляции terminating codon; в последнее время ряд авт. рекомендуют избегать использование термина «бессмысленный кодон", т.к. в действительности Н.-к. выполняет конкретную функцию (имеет смысл) - терминацию синтеза белка.
    * * *
    Стоп-кодон, нонсенс-к., терминатор — тринуклеотид в информационной РНК, сигнализирующий об окончании синтеза полипептида и освобождении полной полипептидной цепи от рибосомы. Существует три различных типа данных С.-к.: UAG (амбер), UGA (опал) и UAA (охра). Ни один из них не соответствует антикодону тРНК.
    Терминатор — специфическая область ДНК (последовательность в опероне), ответственная за прекращение (терминацию) синтеза иРНК (см. РНК информационная) у конца оперона или отдельного гена.

    Англо-русский толковый словарь генетических терминов > nonsense codon

  • 16 punctuation

    n пунктуация, знаки препинания Знаки препинания в английском языке употребляются реже и не так, как в русском языке. К основным случаям употребления знаков препинания в английском языке следует отнести: (1). Предложения, выражающие просьбу, заканчиваются как правило точкой, даже если они стоят в вопросительной форме:

    Will you send me your latest article.

    May I take it.

    (2). Косвенный вопрос заканчивается точкой, а не вопросительным знаком:

    Do you mind if I come a little later.

    He hesitated whether to stay or leave at once.

    (3). Запятой отделяются:
    1). обстоятельственные придаточные предложения, если они стоят в начале предложения перед главным. Если придаточное следует за главным, то оно запятой не отделяется.

    When it was convenient for him, he went to the office.

    Cp. We worked overtime whenever it was necessary;

    2). причастные и абсолютные обороты, стоящие в начале предложения.

    The rain having stopped, we went for a walk.

    A doctor, called to the scene, examined the injured man;

    3). вводные инфинитивные конструкции. То be successful, one must work hard. Если инфинитивная конструкция выполняет функцию подлежащего, то она запятой не отделяется — То become a doctor was his dream;
    4). все вводные слова, обороты, словосочетания и придаточные предложения:
    а) слова типа however, moreover, therefore, besides, consequently, so to speak, in short, of course, as a result, we suppose, I think, as for as she is concerned:

    Besides, he didn't receive any answer.

    Of course, there are many ways to do it.

    Someone, I suppose, should check the papers;

    б) вводные обороты, прерывающие логическую последовательность изложения — Не disliked, and I agree with him, his manner of presentation the problem;
    в) слово also, если оно стоит в начале предложения для усиления — Also, we noticed that the prices were going up ( в остальных случаях also запятой не отделяется, ср. We also noticed that the prices were going up);
    5). вступительные слова и выражения типа yes, indeed, really, surely, well —

    Yes, I would like to say a few words on the problem.

    Well, the next thing we knew he had fired a shot;

    6). описательные определительные придаточные, которые могут быть опущены без ущерба для смысла предложения, в отличие от ограничивающих определительных придаточных, которые опущены быть не могут (последние запятой не отделяются) —

    The girl who lives next door came to work to our office,

    cp. Mary Jones, who lives next door, came to see us.

    The book (that) you gave me to read was very useful to me,

    cp. Pygmalion, the play written by B. Shaw, has been staged by many theatres;

    7). обращения — Henry, fetch another chair, please. I am sorry, Mr. White, that I must interrupt you; 8). конструкции-приложения — Thomas, our manager, is ill. Приложения, тесно связанные с определяемым словом и образующие единое словосочетание, запятой не отделяются — My cousin Bob. Mary Queen of Scots. His friend Bill; 9). ряд однородных определений — She decided to have potatoes, beans, and ice cream. He walked off the stage, turned round, came back, and stared at the audience. He asked for paper, a pencil, and a ruler. They lived in a little, white house; 10). части сложносочиненных предложений, соединенных одним из сочинительных союзов and, but, for, or, nor, while (в значении but) — I dictated the letter, but she didn't put it down correctly. В тех случаях, когда сочинительного союза нет, части сложносочиненного предложения весьма распространенные и внутри имеют свои собственные знаки препинания, запятая между ними не употребляется; в этих случаях предпочтительнее точка с запятой или точка. Нераспространенные части сложносочиненных предложений, даже при наличии союза, запятой не отделяются — Не looked around but he didn't see anybody; 11). слова, выражающие противопоставления — I asked you to fill the document, not to destroy it. I'll let you do it this time, but never again. Children should be seen, but not heard; 12). прямая речь — He asked, "How long will it take you"; 13). вопросная часть разделительных вопросов — Не was right, wasn't he?; 14). обозначения даты и месяца отделяются запятой от обозначения места и года — April 8, 1872; Moscow, July 12, 1972; 15). звания, стоящие после имени собственного — Adams, Ph. D; 16). в четырехзначных и более числительных запятой отделяются числительные после тысячи — 1,767; 2,565,727; 17). номера страниц, два одинаковых слова или два или более чисел, выраженных цифровыми последовательностями и стоящих рядом — Lucy told you, you should stay here; Since 1988, 12,000 new machines have been sold. (4). Запятой не отделяются:
    а) слова в городских адресах, при обозначении страниц, года: page 15; in the year 1986; 115 Oxford Street;
    б) ограничивающие определительные и относительные придаточные, а также дополнительные придаточные — Не knows that you will be late. The book you gave me was very useful.
    (5). Точка с запятой используется главным образом в официальной письменной речи, в которой много очень длинных и синтаксически сложных предложений; в обыденной переписке не рекомендуется использовать точку с запятой слишком часто. (6). Двоеточие, как и в русском языке, употребляется перед перечислением, разъяснением и в приветствиях в деловой переписке. В обыденной, неофициальной переписке после обращения может использоваться запятая — Dear Mr. Brown; My dear Madam; cp. Dear Jane. Если после двоеточия следует полное предложение, то первое слово такого предложения пишется с заглавной буквы:

    These are your duties: Sort the mail, open all that is not personal, throw away the envelopes, and bring the letters to me.

    Если список перечисленных пунктов расположен в столбик, каждая новая строка должна начинаться с заглавной буквы, после каждого пункта знак препинания не ставится: You should know how to use the following office machines:
    1. Typewriter
    2. Calculator
    3. Copy Machine.
    (7). Двоеточие используется для отделения различных частей отсылок, заглавий, формул и числительных: The time was 9:15 p. m; We were given Chapter XII: Section 19 for our homework. (8). Кавычки в английском языке пишутся только сверху: “Where”, he asked, “are you going to keep it?” Только первое слово приводимой прямой речи пишется с заглавной буквы, вторая часть, если прямая речь прервана, пишется с маленькой буквы. (9). Кавычки не употребляются в косвенной речи: Не asked where we would keep it. (10). Заключенное в кавычки высказывание обычно заканчивается запятой или точкой перед закрывающимися кавычками: “They are not here,” he said.

    English-Russian word troubles > punctuation

  • 17 La Bataille du rail

       1946 - Франция (85 мин)
         Произв. Cooperative Generate du Cinema Francais
         Реж. PEHЕ КЛЕМАН
         Сцен. Рене Клеман, Колетт Одри
         Опер. Анри Алекан
         Муз. Ив Бодрие
         В ролях Жан Кларьё (железнодорожник), Жан Доран (другой железнодорожник), Тони Лоран (Камарг), Люсьен Дезано (Атос), Робер Лере (начальник вокзала), Леон Полеон (пленный железнодорожник), Жан Розена (сортировщик поездов).
       Картины борьбы Сопротивления на французских железных дорогах накануне высадки союзников в Нормандии. Регион Шалон-сюр-Саон. Под вагонами прячут послания для бойцов Сопротивления. Прячут людей, желающих перейти демаркационную линию, - в клетке для собак, в наполовину заполненном вагоне-цистерне. Железнодорожники, насколько могут, задерживают передвижение войск. Наклеивают на вагоны неверные ярлыки. Надрезают тормозные рукава. Проливают горючее на пути. Закладывают в вагоны намагниченные бомбы. Группу железнодорожников расстреливают у стены рядом с путями. Их убивают по одному. В момент казни машинисты дают свисток.
       Слушая радиотрансляцию из Лондона, один железнодорожник узнает о высадке союзников. Немцы приказывают подготовить к отправке в Нормандию конвой из 12 поездов под кодовым наименованием «Яблочное зернышко». Железнодорожник садится на мотоцикл и целую ночь мчится в соседний город Сент-Андре и там, сговорившись с начальником станции и разобрав рельсы на пути следования поезда, организует затор, выдав его за партизанскую акцию. Весь следующий день затор ликвидируют. Кто-то подпиливает звено в цепи подъемного крана. Вагон, едва поднявшись над землей, тяжело обрушивается обратно на пути. Когда наконец дорога освобождена, один поезд отправляется в путь, но вскоре останавливается: рельсы впереди разобраны. Партизаны атакуют поезд и вынуждают его дать задний ход. Железнодорожник безуспешно пытается подстроить крушение. Так конвои гоняют взад и вперед по всей железнодорожной сети.
       Конвой «Яблочное зернышко» состоит из бронепоезда и 12 составов, идущих друг за другом. Перед бронепоездом едет вагон с рельсами, на случай повреждения путей. Партизаны нападают на бронепоезд, вооруженный пулеметами. Завязывается жестокая битва. Из бронепоезда выезжает танк и прочесывает район. Машинист 1-го поезда получает предупреждение, что его состав будет подорван на 212-м км. Остальные поезда направляются к линии электропередач. Аварии, подстроенные железнодорожниками, мешают их движению. Конвой попадает под бомбежку. Немцы бегут на всем, что попадается под руку (на велосипедах, телегах и т. д.). Начальник станции Сент-Андре вывешивает трехцветный флаг в окне вокзала. На рельсы выходит первый «свободный» поезд.
        1-й из 6 фильмов Рене Клемана, посвященных Второй мировой войне (см. Благонадежный папаша, Le Père tranquille; Проклятые, Les Maudits; Запретные игры, Jeux interdits; День и час, Le jour et l'heure, 1962; Горит ли Париж?, Paris brule-t-il? 1967). За исключением последнего, все эти фильмы составляют весьма интересный цикл, каждая часть которого только выигрывает от просмотра остальных. Битва на рельсах представляет собой практически уникальное начинание в истории французского кино. Клеман использует средства и методы неореализма, чтобы выстроить эпопею, прославляющую действия сил Сопротивления на французских железных дорогах. Он начинает писать сценарий в сентябре 1944 г. и приступает к съемкам в апреле 1945-го. Фильм задуман изначально как документальная картина в 2 частях для компании «Cooperative Generale du Cinema Francais». Как и в случае с фильмом Рим, открытый город, Roma città aperta( также задуманным изначально как документальный), неореалистический «метод» рождается спонтанно - на площадке, в попытках приспособить условия съемки к сиюминутным нуждам. На площадке стреляют боевыми патронами, поскольку нет средств на закупку холостых. 3 камеры одновременно снимают крушение настоящего поезда (очень зрелищная сцена). Роли в фильме исполняют малоизвестные актеры и настоящие железнодорожники. Вместо единого и искусно выстроенного сюжета - последовательность эпизодов, объединенных между собой только хронологической нитью Истории. Диалоги несут лишь информативную функцию и максимально сокращены.
       Мы назвали фильм прославляющей эпопеей: предоставим историкам определить, насколько это прославление соответствует реальности. Факт в том, что в фильме отсутствуют всякие попытки принижения персонажей. Все действующие лица - герои в полном смысле слова, готовые к самопожертвованию, материально и морально связанные общей целью. В формальном отношении эта солидарность естественным образом рождает эпическую интонацию. Интересно сравнить фильм с Иерихоном, Jéricho*. Калеф и Спак достигали определенной эпической интонации - не такой чистой, как в Битве на рельсах, - более традиционными формальными средствами (известные и колоритные актеры, весьма отточенные диалоги, собранное и очень драматизированное действие), по предлагали зрителю гораздо более сложное и тонкое видение реальной психологической атмосферы. Битва на рельсах, несмотря на мгновенный успех у зрителей и критиков, оказалась быстро забыта. Если рассматривать эту картину как боевик, она обладает не менее выдающимися достоинствами: насколько нам известно, это единственный французский фильм, который по своему размаху и техническому исполнению мог бы сравниться с масштабными американскими фильмами о войне - такими, как Цель-Бирма!, Objective Burma!* и Война в Северной Атлантике, Action in the North Atlantic.

    Авторская энциклопедия фильмов Жака Лурселля > La Bataille du rail

  • 18 бокс Хогнесса

    1. TATA box
    2. Hogness box

     

    бокс Хогнесса
    ТАТА-бокс

    Специфическая последовательность нуклеотидов, присутствующая в промоторных областях генов эукариот (часто в положении [-25]); обобщенная структура Б.Х. ТАТА(АТ)А(АТ); выполняет регуляторную функцию - участвует в инициации транскрипции, обеспечивая ориентацию РНК-полимеразы относительно промотора, функционально эквивалентен боксу Прибнова у прокариот.
    [Арефьев В.А., Лисовенко Л.А. Англо-русский толковый словарь генетических терминов 1995 407с.]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > бокс Хогнесса

  • 19 кепстр

    1. cspstrum

     

    кепстр
    Логарифм спектра сигнала обладающий рядом полезных свойств. Так, обратное преобразование Фурье от логарифма огибающей спектра сконцентрировано по оси времени вблизи нуля, а, следовательно, для его выделения достаточно использовать простейшую взвешивающую функцию типа “окна”. Периодическая последовательность импульсов имеет линейчатый кепстр.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    Русско-английский словарь нормативно-технической терминологии > кепстр

  • 20 nonsense codon

    1. нонсенс-кодон
    2. бессмысленный кодон

     

    бессмысленный кодон
    Последовательность нуклеотидов, терминирующая трансляцию
    [ http://www.dunwoodypress.com/148/PDF/Biotech_Eng-Rus.pdf]

    Тематики

    EN

     

    нонсенс-кодон
    бессмысленный кодон

    Кодон, не кодирующий аминокислоту, терминатор трансляции; в последнее время ряд авт. рекомендуют избегать использование термина «бессмысленный кодон», т.к. в действительности Н.-к. выполняет конкретную функцию (имеет смысл) - терминацию синтеза белка.
    [Арефьев В.А., Лисовенко Л.А. Англо-русский толковый словарь генетических терминов 1995 407с.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > nonsense codon

См. также в других словарях:

  • последовательность Голда — Последовательность, образуемая путем посимвольного сложения по модулю 2 двух псевдослучайных последовательностей. Последовательности Голда с периодом 2n 1 имеют трехзначную функцию автокорреляции ( 1, φ(t), φ(t) 2), где φ(t)=2(N+1)/2… …   Справочник технического переводчика

  • Последовательность Фибоначчи — Числа Фибоначчи  элементы числовой последовательности 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597 … (последовательность A000045 в OEIS) в которой каждое последующее число равно сумме двух предыдущих чисел. Название по… …   Википедия

  • Последовательность —         одно из основных понятий математики. П. образуется из элементов любой природы, занумерованных натуральными числами 1, 2,..., n,..., и записывается в виде x1, x2, …, xn, … или коротко, {xn}. Элементы, из которых составляется П., называются …   Большая советская энциклопедия

  • МИНИМИЗИРУЮЩАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ — последовательность элементов , , минимизирующая непрерывный функционал I[z], : Задачи минимизации функционалов принято разделять на две группы. К первой относят нахождение минимального значения функционала, при к ром несущественно, на каких… …   Математическая энциклопедия

  • ВОЗВРАТНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ — рекуррентная последовательность, последовательность удовлетворяющая соотношению вида где постоянные. Это соотношение позволяет вычислить один за другим члены последовательности, если известны первые рчленов. Классич. примером В. п. является… …   Математическая энциклопедия

  • ДИРИХЛЕ РЯД — функциональный ряд вида где а п комплексные коэффициенты; l п, 0< показатели Д. p., s= s+ it комплексное переменное. При ln=ln пполучается так наз. обыкновенный ряд Дирихле Ряд представляет для s>1 дзета функцию Римана. Ряды где х(п)… …   Математическая энциклопедия

  • Деление (математика) — Запрос «Деление» перенаправляется сюда; для просмотра других значений см. Деление. Деление (операция деле …   Википедия

  • Делимое — Деление (операция деления) это одно из четырёх простейших арифметических действий, обратное умножению. Подобно тому, как умножение заменяет неоднократно повторенное сложение, деление заменяет неоднократно повторенное вычитание. Рассмотрим,… …   Википедия

  • линия — ▲ последовательность ↑ непрерывный, геометрический линия непрерывная геометрическая последовательность; отображение функции одной переменной; след движущейся точки; фигура, изображающая функцию одной переменной; одномерная фигура, т. е. положение …   Идеографический словарь русского языка

  • БЕРНШТЕЙНА ИНТЕРПОЛЯЦИОННЫЙ ПРОЦЕСС — последовательность алгебраич. многочленов, равномерно сходящаяся на отрезке [ 1,1] к функции , непрерывной на том же отрезке. Точнее, Б. и. п. последовательность алгебраич. многочленов где Чебышева многочлены; узлы интерполяции; если произвольное …   Математическая энциклопедия

  • БЕРНУЛЛИ ЧИСЛА — последовательность рациональных чисел найденная Я. Бернулли [1] в связи с вычислением суммы одинаковых стейеней натуральных чисел: Значения первых Б. ч.: Все Б. ч. с нечетными номерами, кроме В 1 равны нулю, знаки чередуются. Б. ч. являются… …   Математическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»